The multicolour size-Ramsey number of powers of paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multicolour Ramsey Number of a Long Odd Cycle

For a graph G, the k-colour Ramsey number Rk(G) is the least integer N such that every k-colouring of the edges of the complete graph KN contains a monochromatic copy of G. Bondy and Erdős conjectured that for an odd cycle Cn on n > 3 vertices, Rk(Cn) = 2 k−1(n− 1) + 1. This is known to hold when k = 2 and n > 3, and when k = 3 and n is large. We show that this conjecture holds asymptotically f...

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

The Size Ramsey Number

Let i2 denote the class of all graphs G which satisfy G-(Gl, GE). As a way of measuring r inimality for members of P, we define the Size Ramsey number ; We then investigate various questions concerned with the asymptotic behaviour of r .

متن کامل

The vertex size-Ramsey number

In this paper, we study an analogue of size-Ramsey numbers for vertex colorings. For a given number of colors r and a graph G the vertex size-Ramsey number of G, denoted by R̂v(G, r), is the least number of edges in a graph H with the property that any r-coloring of the vertices of H yields a monochromatic copy of G. We observe that Ωr(∆n) = R̂v(G, r) = Or(n ) for any G of order n and maximum deg...

متن کامل

An Alternative Proof of the Linearity of the Size-Ramsey Number of Paths

The size-Ramsey number r̂(F ) of a graph F is the smallest integer m such that there exists a graph G on m edges with the property that every colouring of the edges of G with two colours yields a monochromatic copy of F . In 1983, Beck provided a beautiful argument that shows that r̂(Pn) is linear, solving a problem of Erdős. In this note, we provide another proof of this fact that actually gives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2020

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2020.06.004